

State of Vermont Department of Taxes 133 State Street Montpelier, VT 05633-1401 www.tax.vermont.gov

[phone] [fax]

802-828-2505 802-828-2701

Agency of Administration

# Inputs and Assumptions for Electric Utility Assessment Model: Investor-Owned Electric Distribution (GMP)

The Department of Taxes has contracted with Utilities Appraisal Consultant, Brian D. Fogg, LLC, to establish utility values for electric transmission and distribution, as required under 32 V.S.A. § 4452. This document is intended to capture the specific methodology, including inputs and assumptions, for informational purposes only.

# **Inputs and Assumptions**

- 1. The following necessary data from the Continuing Property Records (CPRs) provided by the owner:
  - a. Year in Service/ Year of Install
  - b. Accumulated Cost/ Original Cost
  - c. FERC Account

| Description of Distribution FERC Accounts | FERC  |
|-------------------------------------------|-------|
| Structures and Improvements               | 361   |
| Station Equipment                         | 362   |
| Storage Battery Equipment                 | 363   |
| Poles, Towers and Fixtures                | 364   |
| Poles, Towers and Fixtures – Smart Assets | 364.5 |
| Overhead Conductors and Devices           | 365   |
| Underground Conduit                       | 366   |
| Underground Conductors and Devices        | 367   |
| Line Transformers                         | 368   |
| Pad Mounted Transformers                  | 368a  |
| Services                                  | 369   |
| Services – Underground                    | 369a  |
| Meters                                    | 370   |
| Meters – Smart Meters                     | 370.1 |
| Installations on Customer Premises        | 371   |
| Street Lighting and Signal Systems        | 373   |

d. Town/City/Municipality



Page 1 of 6 – Issued November 2024 | Publication NTC-1342

- e. Construction Work in Progress/CWIP (Currently not included in final assessment)
- f. A description of the asset if available

| Year in<br>Service | "Accumulated<br>Cost" | FERC Account<br>Used | Description        | Town    |
|--------------------|-----------------------|----------------------|--------------------|---------|
| 2008               | \$843,292             | 365                  | WIRE 2-4/0 AL BARE | VT Town |

#### 2. Handy Whitman Index

To calculate the factor that will be applied to the "Accumulated Cost/Original Cost";

- July 1st Handy Whitman index number of "Year in Service/ Year of Install" for the FERC code of the asset (or available entry for that year when no specific July 1 data is present)
- b. July 1 Handy Whitman index number of the year prior to the Valuation Year for the FERC Code of the asset (If Valuation year is 2024, use entry from July 1, 2023)
- c. Divide the Entry for the year prior to the Valuation Year by the year prior to "Year in Service/ Year of Install" for your factor

Using the example above, a FERC 365 property with a Year in Service of 2008:

#### FERC Account 365

|                 | Year | Handy Whitman<br>Index | July 1 Handy<br>Whitman Entry |
|-----------------|------|------------------------|-------------------------------|
| Year in Service | 2008 | 7/1/2008               | 743                           |
| Valuation Year  | 2024 | 7/1/2023               | 1403                          |

#### Factor (1403 ÷ 743) = 1.89

#### 3. Apply Factor for Replacement Cost New (RCN)

a. Multiply the "Accumulated Cost/ Original Cost" by the Factor

| "Accumulated Cost" | Factor | Replacement Cost New |
|--------------------|--------|----------------------|
| \$843,292          | 1.89   | \$1,592,380          |

#### 4. Actual Age of Assets and Useful Lives

a. Calculate the age of the Asset using the year prior to the Valuation Year (use 2023 for Valuation year of 2024)

#### 2023 – 2008 = age of 15 years



| Description and Distribution FERC Accounts | FERC  | Useful Lives |
|--------------------------------------------|-------|--------------|
| Structures and Improvements                | 361   | 50           |
| Station Equipment                          | 362   | 50           |
| Storage Battery Equipment                  | 363   | 50           |
| Poles, Towers and Fixtures                 | 364   | 51           |
| Poles, Towers and Fixtures – Smart Assets  | 364.5 | 17           |
| Overhead Conductors and Devices            | 365   | 53           |
| Underground Conduit                        | 366   | 66           |
| Underground Conductors and Devices         | 367   | 53           |
| Line Transformers                          | 368   | 48           |
| Pad Mounted Transformers                   | 368a  | 48           |
| Services                                   | 369   | 44           |
| Services – Underground                     | 369a  | 55           |
| Meters                                     | 370   | 22           |
| Meters – Smart Meters                      | 370.1 | 17           |
| Installations on Customer Premises         | 371   | 19           |
| Street Lighting and Signal Systems         | 373   | 29           |

b. The Useful Lives used in the model are provided below.

#### 5. Calculating Depreciation with a 20% Floor & 50% First Year Depreciation

a. Divide The Actual Age of the Asset by the Useful Life to get to the % Depreciation to the Bad. The inverse percentage is the Depreciation to the Good.

#### FERC Account 365

| Actual Age<br>(Years) | Useful Life<br>(Years) | % Depreciation to the Bad | % Depreciation to the Good |
|-----------------------|------------------------|---------------------------|----------------------------|
| 15                    | 53                     | 28.3%                     | 71.7%                      |

- b. If an asset is old enough for the Depreciation to the Good to fall below 20%, it would remain at that floor of 20%.
- c. For an asset with a Year in Service/ Year of Install that is one year prior to the Valuation year (2023 for Valuation year of 2024), utilize 50% annual depreciation for the first year.



| Row | A                                                                              | В      |
|-----|--------------------------------------------------------------------------------|--------|
| 1   | Useful Life FERC 365                                                           | 53     |
| 2   | Age of Asset in First Year                                                     | 1      |
| 3   | Annual % Depreciation to the Bad (B2 ÷ B1)                                     | 1.89%  |
| 4   | 50% Annual Depreciation to the Bad in First Year of Install $(B3 \times 50\%)$ | 0.94%  |
| 5   | % Depreciation to the Good in First Year (1-B4)                                | 99.06% |

### FERC Account 365 Installed in 2023 for Valuation Year 2024

# Calculating the Replacement Cost New Less Depreciation (RCNLD) by Applying Depreciation to the RCN

d. Multiply the RCN by the % Depreciation to the Good to get the RCNLD

#### FERC Account 365 Installed in 208 for Valuation Year 2024

| Α              | В          | С       | D              | E              | F                |
|----------------|------------|---------|----------------|----------------|------------------|
| Replacement    | Actual Age | Useful  | % Depreciation | % Depreciation | Replacement Cost |
| Cost New (RCN) | (Years)    | Life    | to the Bad     | to the Good    | New Less         |
|                |            | (Years) | (B ÷ C)        | (I – D)        | Depreciation     |
|                |            |         |                |                | (A × E)          |
| \$1,592,380    | 15         | 53      | 28.3%          | 71.7%          | \$1,141,706      |

e. When the Year in Service/ Year of Install is one year prior to Valuation Year

#### FERC Account 365 Installed in 2023 for Valuation Year 2024

| Α           | В       | С       | D                       | E              | F            | G             |
|-------------|---------|---------|-------------------------|----------------|--------------|---------------|
| Replacement | Actual  | Useful  | %                       | 50% Annual     | %            | Replacement   |
| Cost New    | Age     | Life    | Depreciation            | Depreciation   | Depreciation | Cost New Less |
| (RCN)       | (Years) | (Years) | to the Bad $(B \div C)$ | to the Bad for | to the Good  | Depreciation  |
|             |         |         |                         | (D × 50%)      | (')          |               |
| \$1,592,380 | 1       | 53      | 1.9%                    | 0.94%          | 99.06%       | \$1,577,358   |



f. When the Actual Age of an asset would drop the Depreciation to the Good below 20%

| Α              | В          | С       | D              | E              | F                |
|----------------|------------|---------|----------------|----------------|------------------|
| Replacement    | Actual Age | Useful  | % Depreciation | % Depreciation | Replacement Cost |
| Cost New (RCN) | (Years)    | Life    | to the Bad     | to the Good    | New Less         |
|                |            | (Years) | (B ÷ C)        | (if D > 80%,   | Depreciation     |
|                |            |         |                | Use 20%)       | (A × E)          |
| \$1,592,380    | 49         | 55      | 89.1%          | 20.0%          | \$318,476        |

### FERC Account 365 Installed in 1974 for Valuation Year 2024

#### 6. Calculating the Value for Distribution Transformers & Regulators

a. Transformers & Regulators are valued on a per unit (kVA) basis at their original cost with no further factors or depreciation applied. The following table contains the breakdown of cost/kVA used.

#### Transformers

| kVA   | Cost New |
|-------|----------|
| 1     | \$668    |
| 5     | \$263    |
| 7.5   | \$405    |
| 10    | \$518    |
| 15    | \$777    |
| 25    | \$885    |
| 30    | \$2,419  |
| 37.5  | \$1,277  |
| 45    | \$2,467  |
| 50    | \$1,274  |
| 75    | \$2,844  |
| 100   | \$2,232  |
| 112.5 | \$3,878  |
| 115   | \$43     |
| 150   | \$4,792  |
| 167   | \$2,815  |
| 200   | \$991    |
| 225   | \$7,412  |
| 250   | \$8,241  |
| 300   | \$9,480  |
| 333   | \$10,777 |
| 500   | \$14,839 |

#### Regulators

| kVA  | Cost New |
|------|----------|
| 167  | \$12,926 |
| 76   | \$7,908  |
| 114  | \$12,672 |
| None | \$13,320 |
| 150  | \$7,482  |
| 250  | \$15,512 |

Transformers & Regulators are valued at the average original cost with no factors applied and no further depreciation. Therefore, the assessed value for one 1kVA transformer would be \$668.





State of Vermont Department of Taxes 133 State Street Montpelier, VT 05633-1401 www.tax.vermont.gov

[phone] [fax] 802-828-2505 802-828-2701 Agency of Administration

# Definitions

The inputs and assumptions for the Electric Utility Assessment Model described above are intended to conform with the terms "Mass Appraisal " and "Mass Appraisal Model" as defined by The Dictionary of Real Estate Appraisal, 6th Edition, which are respectively :

**mass appraisal.** The process of valuing a universe of properties as of a given date using standard methodology, employing common data, and allowing for statistical testing. (USPAP, 2016-2017 ed.) Often associated with real property tax assessment valuation.

and

**mass appraisal model.** A mathematical model used to develop values for each property within a group or universe of properties.

Therefore, the Electric Utility Assessment Model itself, and any resulting community-bycommunity assessments are considered to be in compliance with USPAP Standards 5 and 6. Additionally, the Electric Utility Assessment Model itself, and any resulting community-by-community assessments are not intended to be USPAP Standard 1 and 2 appraisals and do not comply with USPAP Standards 1 and 2.

# Disclaimer

The data and inputs described in this document are subject to change as annual adjustments are made to the model.

